ÀÚ·á°Ë»ö-Ç¥ÁØ

Ȩ > ÀڷḶ´ç > ÀÚ·á°Ë»ö > Ç¥ÁØ

ÀÚ·á °Ë»ö°á°ú

°Ë»öÆäÀÌÁö·Î
Ç¥ÁØÁ¾·ù Á¤º¸Åë½Å±â¼úº¸°í¼­(TTAR)
Ç¥ÁعøÈ£ TTAR-06.0297 ±¸ Ç¥ÁعøÈ£
Á¦°³Á¤ÀÏ 2025-05-13 ÃÑ ÆäÀÌÁö 17
ÇÑ±Û Ç¥Áظí ÀÚü Áö¼Ó °¡´ÉÇÑ °øÁß ³×Æ®¿öÅ©¸¦ À§ÇÑ ½ÉÃþ °­È­ ÇнÀ ±â¹Ý ¼Û½Å Àü·Â ÇÒ´ç ±â¼ú (±â¼úº¸°í¼­) -> (PG428 Çù·Â)
¿µ¹® Ç¥Áظí Deep Reinforcement Learning-Based Transmit Power Allocation Technology for Self-Sustainable Aerial Networks (Technical Report)
ÇÑ±Û ³»¿ë¿ä¾à º» ±â¼úº¸°í¼­´Â ¿¡³ÊÁö ÇϺ£½ºÆÃ ±â´ÉÀÌ Å¾ÀçµÈ ¹«ÀÎÇ×°ø±â µîÀ» °øÁß ±âÁö±¹À¸·Î Ȱ¿ëÇÏ´Â °øÁß ³×Æ®¿öÅ©¿¡¼­ °¢ Åë½Å ŸÀÓ ½½·Ô¿¡¼­ ÃÖÀûÀÇ ¼Û½ÅÀü·Â ÇÒ´çÀ» À§ÇÑ AIÀÇ »õ·Î¿î Ȱ¿ë »ç·Ê¸¦ ´Ù·é´Ù. ½ÉÃþ °­È­ ÇнÀÀ» ±â¹ÝÀ¸·Î ¿¡³ÊÁö ÇϺ£½ºÆÃÀ» ¼öÇàÇÏ´Â ¹«ÀÎ Ç×°ø±â°¡ Áö»óÀÇ ´ÙÁß »ç¿ëÀÚ¿¡°Ô ¼­ºñ½º¸¦ Á¦°øÇÒ ¶§ ÇϺ£½ºÆÃ ÇÑ ¿¡³ÊÁö·ÎºÎÅÍ °¢ Åë½Å ŸÀÓ½½·Ô¿¡ »ç¿ëÇÒ ¼Û½ÅÀü·ÂÀ» È¿À²ÀûÀ¸·Î ÇÒ´çÇÔÀ¸·Î½á Çٽɼº´ÉÁöÇ¥ÀÎ Àüü Åë½Å ŸÀÓ½½·Ô¿¡¼­ÀÇ ÇÕ-Àü¼Û·üÀ» ÃÖ´ëÈ­ ÇÏ´Â ±â¹ýÀ» Á¦½ÃÇÑ´Ù. À̸¦ ÅëÇØ ³×Æ®¿öÅ©¿¡ ³ÐÀº Ä¿¹ö¸®Áö¿Í Àü·Ê ¾ø´Â ¿¬°á¼ºÀ» Á¦°øÇÒ ¼ö ÀÖ¾î ²÷±è ¾ø´Â Åë½Å ¼­ºñ½º¸¦ Áö¿øÇÒ ¼ö ÀÖÁö¸¸, ±âÁ¸ÀÇ ±âÁö±¹°ú ´Þ¸® Àü·ÂÀ» Áö¼ÓÀûÀ¸·Î °ø±Þ¹Þ±â ¾î·Á¿ü´ø °øÁß ³×Æ®¿öÅ©ÀÇ ÀÚü Áö¼Ó¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ´Ù. ÀÌ¿Í ÇÔ²², °øÁß ±âÁö±¹ÀÇ ºü¸¥ À̵¿¼ºÀ¸·Î ÀÎÇØ ¹ß»ýÇÏ´Â ºÎÁ¤È®ÇÑ Ã¤³Î »óÅ Á¤º¸¸¦ °í·ÁÇÏ¿© Áö»óÀÇ ´ÙÁß»ç¿ëÀÚ¿¡°Ô ½Å·Ú¼º ÀÖ´Â Åë½Å ¼­ºñ½º¸¦ Á¦°øÇϱâ À§ÇÑ Àü¼Û·ü ºÐÇÒ ´ÙÁßÁ¢¼Ó±â¼ú ±â¹ÝÀÇ ºöÆ÷¹Ö ¼³°è ¹æ¾ÈÀ» Á¦½ÃÇÑ´Ù.
¿µ¹® ³»¿ë¿ä¾à This technical report deals with a novel application of AI for optimal transmission power allocation in aerial networks where unmanned aerial vehicles equipped with energy harvesting capabilities are used as aerial base stations. Based on deep reinforcement learning, the UAVs perform energy harvesting and efficiently allocate the transmission power for each communication time slot from the harvested energy when providing services to multiple ground users. This method aims to maximize the sum-rate, which is a key performance indicator representing the total transmission rate across all communication time slots. This approach not only supports seamless communication services through wide coverage and unprecedented network connectivity but also enhances the self-sustainability of aerial networks, which traditionally face challenges in continuous power supply unlike ground-based base stations. Additionally, considering the inaccurate channel state information caused by the rapid mobility of aerial base stations, the report proposes a beamforming design based on rate-splitting multiple access (RSMA) technology to provide reliable communication services to multiple ground users.
°ü·Ã IPR È®¾à¼­ Á¢¼öµÈ IPR È®¾à¼­ ¾øÀ½
°ü·ÃÆÄÀÏ    TTAR-06.0297.pdf TTAR-06.0297.pdf
Ç¥ÁØÀÌ·Â
Ç¥Áظí Ç¥ÁعøÈ£ Á¦°³Á¤ÀÏ ±¸ºÐ À¯È¿
¿©ºÎ
IPR
È®¾à¼­
ÆÄÀÏ
ÀÚü Áö¼Ó °¡´ÉÇÑ °øÁß ³×Æ®¿öÅ©¸¦ À§ÇÑ ½ÉÃþ °­È­ ÇнÀ ±â¹Ý ¼Û½Å Àü·Â ÇÒ´ç ±â¼ú (±â¼úº¸°í¼­) -> (PG428 Çù·Â) TTAR-06.0297 2025-05-13 Á¦Á¤ À¯È¿ ¾øÀ½ TTAR-06.0297.pdf