Ȩ > ÀڷḶ´ç > ÀÚ·á°Ë»ö > Ç¥ÁØ
ÀÚ·á °Ë»ö°á°ú
Ç¥ÁØÁ¾·ù | Á¤º¸Åë½Å±â¼úº¸°í¼(TTAR) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ç¥ÁعøÈ£ | TTAR-06.0290 | ±¸ Ç¥ÁعøÈ£ | |||||||||||||||
Á¦°³Á¤ÀÏ | 2024-10-23 | ÃÑ ÆäÀÌÁö | 18 | ||||||||||||||
ÇÑ±Û Ç¥Áظí | ºÐ»êÇü ÀΰøÁö´ÉÀ» Ȱ¿ëÇÑ ¸ð¹ÙÀÏ ¿¡Áö ÄÄÇ»ÆÃ¿¡³ÊÁö ÃÖÀûÈ(±â¼úº¸°í¼) | ||||||||||||||||
¿µ¹® Ç¥Áظí | Energy Optimization in Mobile Edge Computing Networks via Decentralized Learning(Technical Report) | ||||||||||||||||
ÇÑ±Û ³»¿ë¿ä¾à | ÀÌ ±â¼úº¸°í¼´Â ¹«¼± ¾×¼¼½º¸¦ À§ÇÑ ÀΰøÁö´É ¹× ±â°èÇнÀÀÇ »õ·Î¿î ÇÁ·¹ÀÓ¿öÅ©·Î½á, °èÃþ ±¸Á¶¸¦ °¡Áø ´ÙÁß °èÃþ ³×Æ®¿öÅ©¿¡¼ ºÐ»ê ÃÖÀûÈ ÀÛ¾÷À» ´Ù·ç´Â À¯¿¬ÇÑ µö·¯´× Àü·«À» Á¦½ÃÇÑ´Ù. ´õ ³ª¾Æ°¡ °èÃþÇü ³×Æ®¿öÅ© ±¸Á¶ Áß ÇϳªÀÎ ¸ð¹ÙÀÏ ¿¡Áö ÄÄÇ»ÆÃ ȯ°æ¿¡¼ ¿¡³ÊÁö ¼Òºñ(energy consumption) ¹× Áö¿¬ ½Ã°£(latency)°ú °°Àº ½Ã½ºÅÛÀÇ ÇÙ½É ¼º´É ÁöÇ¥(key performance indicator: KPI)¸¦ ÃÖÀûÈÇÏ´Â ÃÖÀûÈ ¹®Á¦¸¦ ºÐ»êÇü ÇнÀ ±¸Á¶¸¦ ÅëÇØ ÇØ°áÇÏ´Â ¹æ¹ýÀ» Á¦½ÃÇÑ´Ù. Á¦¾ÈÇÏ´Â ±â¹ýÀº ´ÜÀÏ ÈÆ·Ã ÇÁ·Î¼¼½º¸¦ ÅëÇØ ´ë±Ô¸ð ³ëµåµéÀ» ó¸®ÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ´Â °íÈ¿À² ¹× ÀúÁö¿¬ Àü¼ÛÀ» ¿ä±¸ÇÏ´Â Â÷¼¼´ë Åë½Å ȯ°æ¿¡¼ Ȱ¿ëµÉ ¼ö ÀÖ´Ù. ÀÌ ±â¼úº¸°í¼´Â 3GPP Ç¥ÁØ¿¡¼ Á¦½ÃÇÑ AI/ML ±â¼ú ±Ô°Ý(TR 38.843)À» Âü°íÇÏ¿© Á¦¾ÈÇÑ ±â¹ýÀÇ ÈÆ·Ã ¹æ¹ý ¹× ¼º´É Æò°¡ °á°ú¸¦ ±â¼úÇÏ¿´´Ù. | ||||||||||||||||
¿µ¹® ³»¿ë¿ä¾à | This technical report presents a novel framework of artificial intelligence (AI) and machine learning (ML) for wireless access, offering a flexible deep learning strategy to address decentralized optimization tasks in multi-tier networks with a hierarchical structure. Furthermore, it proposes a method to solve optimization problems, such as minimizing key performance indicators (KPIs) of the system, including energy consumption and latency, in a hierarchical network structure, specifically focusing on a mobile edge computing environment, through distributed learning structures. The proposed approach is capable of handling large-scale nodes through a single training process, making it suitable for next-generation communication environments that demand high efficiency and low-latency transmission. Moreover, this technical report describes the training methodology and performance evaluation results of the proposed technique, referring to the AI/ML technology specifications outlined in the 3GPP standards (TR 38.843). | ||||||||||||||||
°ü·Ã IPR È®¾à¼ | Á¢¼öµÈ IPR È®¾à¼ ¾øÀ½ | ||||||||||||||||
°ü·ÃÆÄÀÏ |
![]() |
||||||||||||||||
Ç¥ÁØÀÌ·Â |
|