Ȩ > Ç¥ÁØÈ °³¿ä > TTAÀÇ Ç¥ÁØÇöȲ
Ç¥ÁعøÈ£ | TTAK.KO-10.1297 | ±¸Ç¥ÁعøÈ£ | |
---|---|---|---|
Á¦°³Á¤ÀÏ | 2021-12-08 | ÃÑÆäÀÌÁö | 15 |
ÇѱÛÇ¥Áظí | ÀüÀÚÄÚ¿¡¼ °úµµ»óÅ¿¡¼ÀÇ °¡½ººÐ·ù¸¦ À§ÇÑ ¼øȯ½Å°æ¸Á Àû¿ë ÂüÁ¶¸ðµ¨ | ||
¿µ¹®Ç¥Áظí | Reference Model of Recurrent Neural Network for Gas Classification from Transient State at Electronic Nose | ||
Çѱ۳»¿ë¿ä¾à | ÀÌ Ç¥ÁØÀº °¡½º ¼¾¼ ¾î·¹À̸¦ »ç¿ëÇÏ´Â ÀüÀÚÄÚ ½Ã½ºÅÛ¿¡¼ µö·¯´× ¾Ë°í¸®ÁòÀÇ ÀÏÁ¾ÀÎ ¼øȯ½Å°æ¸Á(Recurrent Neural Network)À» ÀÌ¿ëÇÏ¿© °úµµ»óÅ¿¡¼ °¡½º¸¦ ÀνÄÇÏ°í ºÐ·ùÇϱâ À§ÇØ ÇÊ¿äÇÑ µ¥ÀÌÅÍ Ãëµæ ¹æ¹ý, µ¥ÀÌÅÍÀÇ ±¸Á¶¿Í ±¸¼º ¹æ¹ý, µ¥ÀÌÅÍ¿Í ¼øȯ½Å°æ¸Á °úÀÇ ÀÎÅÍÆäÀ̽º ¹æ¹ý µîÀ» Á¤ÀÇÇÑ´Ù. | ||
¿µ¹®³»¿ë¿ä¾à | The standard is a data acquisition method required to recognize and classify gases in transients using a recurrent neural network, a kind of deep learning algorithm in an electronic nose system using a gas sensor array, and the structure and composition of the data. It defines methods, methods of interfacing data with recurrent neural networks | ||
±¹Á¦Ç¥ÁØ | |||
°ü·ÃÆÄÀÏ | TTAK.KO-10.1297.pdf |