Ç¥ÁØÈ­ Âü¿©¾È³»

TTAÀÇ Ç¥ÁØÇöȲ

Ȩ > Ç¥ÁØÈ­ °³¿ä > TTAÀÇ Ç¥ÁØÇöȲ

Ç¥ÁعøÈ£ TTAK.KO-11.0262/R1 ±¸Ç¥ÁعøÈ£
Á¦°³Á¤ÀÏ 2020-12-10 ÃÑÆäÀÌÁö 29
ÇѱÛÇ¥Áظí ÀÚÀ²ÁÖÇà ÀÎÁö ¼ÒÇÁÆ®¿þ¾î Æò°¡¸¦ À§ÇÑ °´Ã¼ ¼Ó¼º Á¤ÀÇ
¿µ¹®Ç¥Áظí Definition of Object Properties for Autonomous Driving Cognitive Software Evaluation
Çѱ۳»¿ë¿ä¾à ÀÚÀ²ÁÖÇà Â÷·®Àº ÀÎÁö, ÆÇ´Ü, Á¦¾îÀÇ °úÁ¤À» ÅëÇØ ±¸µ¿µÈ´Ù. º» Ç¥ÁØ¿¡¼­´Â ÀÎÁö¿¡ ÇÊ¿äÇÑ °´Ã¼ÀÇ ºÐ·ù ¹× ¼Ó¼ºÁ¤º¸¸¦ Á¤ÀÇÇÑ´Ù. ÀÎÁö´Â Ä«¸Þ¶ó¿Í ´Ù¾çÇÑ ¼¾¼­(¶óÀÌ´Ù, ·¹ÀÌ´õ, ÃÊÀ½ÆÄ µî)¸¦ ÅëÇØ ¼öÁýµÈ Á¤º¸¸¦ È°¿ëÇÏ¿© ÁÖº¯ °´Ã¼ µîÀ» ±¸ºÐÇÏ´Â °ÍÀ¸·Î ÀÚÀ²ÁÖÇà Â÷·®À» ±¸ÇöÇϱâ À§ÇÑ °¡Àå ±âº»ÀûÀÎ ±â¼úÀ̶ó°í ÇÒ ¼ö ÀÖ´Ù.

ÃÖ±Ù¿¡´Â ÀΰøÁö´É ¹× µö ·¯´×(Deep Learning) ±â¼ú µîÀ» Àû¿ëÇÑ ´Ù¾çÇÑ Â÷·®¿ë ÀÎÁö ¼ÒÇÁÆ®¿þ¾î¸¦ °³¹ßÇÏ°í ÀÖÀ¸³ª, °´Ã¼¸¦ ÀÎÁöÇÑ °á°ú¹°ÀÇ Ç¥Çö¹æ½ÄÀÌ °³¹ß»ç¸¶´Ù ´Þ¶ó ¼º´É ¼öÁØÀ» ÆǺ°ÇÏ°í ºñ±³Çϴµ¥ ¾î·Á¿òÀ» °¡Áö°í ÀÖ´Ù. µû¶ó¼­, °´°üÀûÀÎ Æò°¡ °á°ú¸¦ µµÃâÇϱâ À§ÇÏ¿© °´Ã¼ µ¥ÀÌÅ͸¦ ºÐ·ùÇÏ°í °´Ã¼ÀÇ ¼Ó¼º°ú ±× °ªÀ» Á¤ÀÇÇÏ¿´´Ù.
¿µ¹®³»¿ë¿ä¾à The autonomous vehicle is driven through the process of perception, determination, and control. Perception is the most basic technique to realize an autonomous vehicle by using information collected through a camera and various sensors (Lidar, RADAR, ultrasonic, etc). Recently, various perception softwares using artificial intelligence(AI) and Deep Learning technology have been developed, but there is no performance evaluation method for objective perceptual software.

In order to derive an objective evaluation result, standardization of the data attribute value of objects should precede.
Therefore, in order to derive an objective evaluation result, standardization of data property information for objects that are expressed differently by various developers is required.
±¹Á¦Ç¥ÁØ
°ü·ÃÆÄÀÏ TTAK.KO-11.0262_R1.pdf TTAK.KO-11.0262_R1.pdf            

ÀÌÀü
IMT-2000 3GPP - ¹«¼±¸Á Iur Á¢¼Ó±Ô°Ý RNSAP ½ÅÈ£ (R5)
´ÙÀ½
IMT-2000 3GPP - ¹«¼±¸Á Iur Á¢¼Ó±Ô°Ý Common Transport Channel µ¥ÀÌÅÍ Àü¼ÛÀ» À§ÇÑ »ç¿ëÀÚ Æò¸é ÇÁ·ÎÅäÄÝ (R6)