Ç¥ÁØÈ­ Âü¿©¾È³»

TTAÀÇ Ç¥ÁØÇöȲ

Ȩ > Ç¥ÁØÈ­ °³¿ä > TTAÀÇ Ç¥ÁØÇöȲ

Ç¥ÁعøÈ£ TTAK.KO-04.0196 ±¸Ç¥ÁعøÈ£
Á¦°³Á¤ÀÏ 2014-12-17 ÃÑÆäÀÌÁö 27
ÇѱÛÇ¥ÁØ¸í ´Ü±Ç º¯¾Ð±â ±ÞÀü ¹æ½Ä ±³·ù ÀüöÀÇ ÀüÀÚÀ¯µµ ¹ß»ý Àü·ù °è»ê ¹æ¹ý
¿µ¹®Ç¥Áظí The Calculation Method of Inducing Current due to Alternate Current Railway System fed by Auto-Transformer
Çѱ۳»¿ë¿ä¾à Àüö ¼±·Î¸¦ µû¶ó º´ÇàÇÏ´Â ´Ù¼öÀÇ µµÃ¼µé¿¡ ÀÇÇÑ »óÈ£ ÀÓÇÇ´ø½º ¿µÇâ °ü°è°¡ Á¤·®ÀûÀ¸·Î ¹Ý¿µµÇµµ·Ï Çϴ ȸ·Î ¸ðµ¨À» Á¦½ÃÇÏ°í º´Çà ¼±·Î »ó¿¡¼­ ÀýºÐµÈ ¾î´À ÇÑ ±¸°£¿¡¼­ À¯µµ¸¦ ¹ß»ý½ÃÅ°´Â ÃÑ Àü·ù¸¦ °è»êÇÏ´Â Çà·Ä½ÄÀ» Á¦½ÃÇÑ´Ù.
ÀÌ ÃÑ À¯µµ ¹ß»ý Àü·ù¸¦ °è»êÇϱâ À§ÇÏ¿© ÇÊ¿äÇÑ °¢ ¼±·Îµé °£ÀÇ ÀÓÇÇ´ø½º Çà·Ä½ÄÀ» Á¦½ÃÇÏ°í ÇØ´ç ±¸°£¿¡ ´ëÇÑ ÀüÀ§ º¤Å͸¦ °è»êÇϱâ À§ÇÑ Çà·Ä½ÄµéÀÇ °ü°è½ÄÀ» Á¦½ÃÇÑ´Ù.
¾Æ¿ï·¯ ¼±·Î °£ ¾îµå¹ÌÅϽº¸¦ °è»êÇÏ´Â ½ÄÀÌ Á¦°øµÇ¸ç À§ÀÇ ÀüÀ§ º¤ÅÍ °ü°è½ÄÀ» Ç®±â À§ÇÏ¿© ÃÖÃÊ ±ÞÀü °èÅëÀ¸·ÎºÎÅÍ °ø±ÞµÇ´Â Àü·ù¿ø º¤Å͸¦ °è»êÇÏ´Â ¹æ¹ýÀ» Á¦°øÇÑ´Ù.
ºÎ¼Ó¼­¿¡¼­´Â ½ÇÁ¦ ±³·ù Àüö ¼±·Î¿¡¼­ ´Ù·ç¾îÁö´Â ÁÖ¿ä ÀÓÇÇ´ø½º ¹× ¾îµå¹ÌÅϽº °ü°è Çà·ÄµéÀ» ³ªÅ¸³»°í ÀÖ´Ù.
¿µ¹®³»¿ë¿ä¾à A circuitary model is shown to reflect quantitatively the relationship of mutual impedances between multiple parallelized conductors following a railway and a matrix form is provided to calculate a total inducing current pertinent to a certain devided section of those parallelized lines.
A matrix form for impedances between the lines which is needed to calculate this total inducing current is provided and a coalesced equation of matrix forms to calculate potential vectors corresponding to a selected line section.
In addition, calculating equations for the admittances between the lines are described and calculation methods of current source vectors fed from a origin point of power plant system are provided.
The major related matrices of impedance and admittance which are pertinent to a real alternate current electrified railway are provided in the Annex.
±¹Á¦Ç¥ÁØ
°ü·ÃÆÄÀÏ TTAK.KO-04.0196_[2].pdf TTAK.KO-04.0196_[2].pdf            

ÀÌÀü
Àç³­¾ÈÀüÅë½Å¸Á ÈÞ´ë¿ë ¹«Àü±â¿Í À¯¼± Ǫ½ÃÅõÅäÅ© ¸¶ÀÌÅ© °£ ÀÎÅÍÆäÀ̽º
´ÙÀ½
¹«Àαâ È°¿ë Àç³­ °¨½Ã ¹× ´ëÀÀ ¼­ºñ½º¸¦ À§ÇÑ Ç÷§ÆûÀÇ µ¥ÀÌÅÍ ¸ðµ¨